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Abstract

Using general non-skew symmetric classical r -matrices with a spectral parameter, we construct new quantum spin chains that
generalize famous Gaudin spin chains. With the help of the special quasigraded Lie algebras, we construct new examples of
the non-skew symmetric classical r -matrices with a spectral parameter and explicit examples of new commuting Gaudin-type
hamiltonians.
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1. Introduction

In the last few years, interest has arisen in integrable Gaudin-like spin chains [1]. This is explained by the fact that
several new connections between Gaudin magnets and other models of mathematical physics have been discovered.
The first one is a connection between Gaudin spin chains and solutions of the Knizhnik–Zamolodchikov equations
which associates Gaudin magnets with the conformal field theory [2,3]. The second is a connection between Gaudin
spin chains and the BCS (Bardeen–Cooper–Schleiffer) model in one dimension [4,5]. These facts give new motivation
to investigating the Gaudin-like spin chains. Known examples of Gaudin spin chains are connected with the skew
symmetric solutions of the classical Yang–Baxter equations [1,6,7]. All such solutions are classified [8] and are
exhausted by rational, trigonometric and elliptic solutions.

In our previous paper [9] we constructed some new integrable classical spin chains starting from the general
non-skew symmetric solutions of the generalized classical Yang–Baxter equations (a dualized form of the modified
Yang–Baxter equations [10–13]) with values in semi-simple (reductive) Lie algebras g. In particular, we have
constructed the second order (in spin variables) hamiltonians of these systems and showed that they are direct analogs
of the famous Gaudin hamiltonians. We have called our systems “generalized Gaudin systems”.
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In the present paper we consider a problem of the quantization of the generalized Gaudin systems. The quantization
of the basic (spin) variables is achieved by the standard procedure of substitution of the Lie–Poisson bracket on g⊕N

by commutator or, in other words, in passing from (S(g⊕N ), { , }) to (A(g⊕N ), [ , ]) or some of its representations in
the Hilbert spaceH. Nevertheless, due to the problem of ordering, such a simple recipe does not solve the problem of
commutativity of the classically Poisson-commutative integrals which are non-linear in basic variables. This problem
is non-trivial also in the case of integrable systems connected with the linear r -matrix bracket, especially in the case of
the general non-skew symmetric r matrices with the spectral parameters. At the present moment, no general approach
to a proof of the quantum integrability of such the classically integrable systems is known. That is why we deal with
this problem in the case of the our systems directly. We give a direct proof that, after symmetrization in spin variables,
generalized Gaudin hamiltonians stay commutative also in the quantum case. They have the following form:

Ĥ l
=

N∑
k=1,k 6=l

dim g∑
α,β=1

rαβ(uk, ul)Ŝk
α Ŝl

β +
1
2

dim g∑
α,β=1

rαβ

0 (ul , ul)(Ŝl
α Ŝl

β + Ŝl
β Ŝl

α), l ∈ 1, N . (1)

Here, N is a number of sites, Ŝl
α , Ŝk

β are components of the generalized spin operators in the site l and k,

correspondingly, that obey the commutation relations of g⊕N , rαβ(uk, ul) are the matrix elements of the g ⊗ g-valued
classical r matrix r(uk, ul), rαβ

0 (ul , ul) are the matrix elements of its regular part (see definition (8)) and uk , k ∈ 1, N ,
are some fixed complex numbers. Note that our hamiltonians coincide with the Gaudin hamiltonians only in the
case rαβ(uk, ul) = −rβα(ul , uk). In the other cases they contain, as is clear from their form, besides the usual term
describing the interactions of the spins living at different sites an additional term describing the “self-action” of the
spin living at the same cite.

In order to make our construction more interesting and concrete, we construct new non-skew symmetric solutions
of the generalized classical Yang–Baxter equation and use them to produce new Gaudin-type systems according to the
formula (1). In order to construct such solutions, we use the connection of the classical Yang–Baxter equations with
the theory of the infinite-dimensional Lie algebras [11]. We rely on the fact that each infinite-dimensional Lie algebra
g̃ of g-valued functions that admits a decomposition into a direct sum of two subalgebras g̃ = g̃+ + g̃− (Kostant–Adler
scheme) also admits a classical r -matrix that coincides with the kernel of the operator R [11,15]:

R =
1
2
(P+ − P−), where P± are the projection operators on the subalgebras g̃±.

Hence, in order to construct new classical r -matrices, it is necessary to construct new Lie algebras g̃ admitting
decomposition into the direct sum of two subalgebras. In our previous papers [16–19] we have proposed for this
role special quasigraded Lie algebras g̃F with the decomposition g̃F = g̃F+ + g̃F− realized as a loop Lie algebra
g(u−1, u) with the Lie bracket, deformed by some cocycle F . Its Lie subalgebra g̃F− was independently constructed
also in [20] as a complementary subalgebra to the Lie algebra of Taylor series g((u)) in the Lie algebra of Laurent
power series g(u−1, u)). In the present paper we combine our previous ideas with the results of [20] and realize g̃F as
a quasigraded Lie subalgebra in the Lie algebra of the Loran power series g(u−1, u)) defined with the help of some
map Φ(u) : g(u−1, u)) → g(u−1, u)), where Φ(u) = 1 +

∑
∞

k=1 Φkuk , Φk : g → g, F = δΦ1, and δ is a standard
coboundary operator on the Lie algebra g. Using this realization, we obtain new non-skew symmetric solutions of
the generalized classical Yang–Baxter equation rΦ(u, v). These solutions generalize the so-called “anisotropic” non-
skew symmetric r -matrices rA(u, v) constructed in our previous paper [9]. The corresponding generalized Gaudin
hamiltonians have the following form:

Ĥ l
=

N∑
k=1,k 6=l

dim g∑
α,β=1

(Φ−1(ul)Φ(uk))
αβ

(uk − ul)
Ŝk
α Ŝl

β +
1
2

dim g∑
α,β=1

(Φ−1(ul)∂ul Φ(ul))
αβ(Ŝl

α Ŝl
β + Ŝl

β Ŝl
α). (2)

We consider in detail examples of such hamilonians that correspond to several particular cases of the map Φ(u)

and to r -matrix rΦ(u, v). We show, in particular, that in the case N = 1, g = so(3) among the hamiltonians (2)
corresponding to the different maps Φ(u) there is the quantized hamiltonian of the usual anisotropic Euler top, and in
the case N = 2, g = so(3) there are hamiltonians of the quantized Steklov system on so(3) + so(3). Hence, in the
case N = 1, hamiltonian (1) generalizes a quantized hamiltonian of the usual Euler top, and in the case N = 2 two
hamiltonians (1) are generalizations of the quantized Steklov hamiltonians.
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The structure of the present paper as follows. In the first section we introduce the main definitions and notations,
formulate the main theorem and some of its consequences. In the second section we consider the connection of
the classical r -matrices with the infinite-dimensional Lie algebras, introduce special quasigraded Lie algebras gF in
different realizations and construct r -matrices rΦ(u, v). In the third section we consider examples of the generalized
Gaudin hamiltonians (1) associated with r -matrix rΦ(u, v).

2. Integrable spin chains and classical r-matrices

Let g be a simple (reductive) Lie algebra. Let Xα, α = 1, dim g be some basis in g with the commutation relations:

[Xα, Xβ ] =

dim g∑
γ=1

Cγ
αβ Xγ . (3)

Then Ŝi
α, α = 1, dim g, i = 1, N are linear operators in some Hilbert space that constitute a Lie algebra isomorphic

to g⊕N with the commutation relations:

[Ŝi
α, Ŝ j

β ] = δi j
dim g∑
γ=1

Cγ
αβ Ŝ j

γ . (4)

We will consider operators Ŝα to be an α component of the “generalized spin operator”. Then operators Ŝi
α could be

interpreted as an α component of the generalized spin operator living at the i-cite of the generalized spin chain.

Example 1. In the case g = so(3), operators Ŝa, α = 1, 3, are components of the usual spin and operators Ŝi
α have

the usual so(3)⊕N commutation relations:

[Ŝi
α, Ŝ j

β ] = δi j
3∑

γ=1

εαβγ Ŝ j
γ . (5)

We will be interested in a construction of the family of the second order (in “spin” variable Ŝi
α) mutually commuting

operators Ĥ j , j = 1, N , that generalize standard Gaudin hamiltonians.

We will need the following definition:

Definition 1. A function of two complex variables r(u1, u2) with values in the tensor square of the algebra g is called
a classical r -matrix if it satisfies the following “generalized” classical Yang–Baxter equation1:

[r12(u1, u2), r13(u1, u3)] = [r23(u2, u3), r12(u1, u2)] − [r32(u3, u2), r13(u1, u3)], (6)

where r12(u1, u2) ≡
∑dim g

α,β=1 rαβ(u1, u2)Xα ⊗ Xβ ⊗ 1 etc.

Remark 1. If the matrix r(u1, u2) is “skew”, i.e. r12(u1, u2) = −r21(u2, u1), Eq. (6) passes into the usual classical
Yang–Baxter equation:

[r12(u1, u2), r13(u1, u3)] = [r23(u2, u3), r12(u1, u2) + r13(u1, u3)]. (7)

Due to the fact that all solutions of the Eqs. (7) are skew [21], each solution of (7) is also a solution of (6).

Let us fix N distinct points {uk} on the complex plane such that, in the neighborhood of these points, r(u, v)

possesses the following decomposition:

r(u, v) =
ĉ

(u − v)
+ r0(u, v) (8)

1 This equation first appeared in somewhat different form in the papers [10] and [12]. In the present form it has appeared later in the paper [14].
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where r0(u, v) is a regular in the neighborhood of the points u = uk , v = um , where k, m ∈ 1, N , g ⊗ g-valued
function, ĉ ∈ g ⊗ g is the tensor Casimir, i.e. ĉ =

∑
α,β gαβ Xα ⊗ Xβ , gαβ is the nondegenerate invariant metric on g.

The following theorem holds true:

Theorem 2.1. Let r(ui , u j ) ≡
∑dim g

α,β=1 rαβ(ui , u j )Xα ⊗ Xβ be the classical r-matrix and r0(ui , u j ) its regular part.

Then the second order operators Ĥ l , l = 1, N of the type:

Ĥ l
=

N∑
k=1,k 6=l

dim g∑
α,β=1

rαβ(uk, ul)Ŝk
α Ŝl

β +
1
2

dim g∑
α,β=1

rαβ

0 (ul , ul)(Ŝl
α Ŝl

β + Ŝl
β Ŝl

α) (9)

constitute commutative subalgebra in the universal enveloping algebra A(g⊕N ) and all its representations.

Idea of the Proof. We prove the theorem directly, showing that [Ĥ k, Ĥ l
] = 0 ∀k, l, k 6= l. In the proof, we use the

generalized classical Yang–Baxter equation (6) and some of its consequences. The proof is straightforward but a bit
lengthy, and is detailed in the Appendix.

Remark 2. In the case of the skew symmetric r -matrices, we have that rα,β

0 (ul , ul) = −rβ,α

0 (ul , ul) and, hence, the
additional term in the corresponding hamiltonian Ĥ l turns out to be zero and Ĥ l coincides with the standard Gaudin
hamiltonian.

Remark 3. In the classical limit, hamiltonian H l acquires the form:

H l
=

N∑
k=1,k 6=l

dim g∑
α,β=1

rαβ(uk, ul)Sk
α Sl

β +

dim g∑
α,β=1

rαβ

0 (ul , ul)Sl
α Sl

β . (10)

In this case, they Poisson-commute: {H k, H l
} = 0 with respect to the natural Lie–Poisson bracket on the direct sum

of N copies of g∗:

{Si
α, S j

β} = δi j
dim g∑
γ=1

Cγ
αβ S j

γ . (11)

Their commutativity also follows from the representation:

H k
= resu=uk c2(L(u)), (12)

where c2 is a second order Casimir of g defined with the help of the invariant tensor gαβ : c2(L) =
∑dim g

α,β=1 gαβ Lα Lβ

and the L-operator L(u) is defined as follows [9]:

L(u) =

N∑
k=1

dim g∑
α,β=1

Sk
αrαβ(uk, u)Xβ .

For the case of a general g, these hamiltonians do not form a complete family of commuting integrals and they should
be completed by the following “higher” integrals:

I r,i
n = resu=ui (u − ui )

ncr (L(u)), (13)

where cr (L) is a Casimir function on g of order r .

A proof of the quantum commutativity of the “higher” integrals is a separate complicated problem even in the case
of the standard skew symmetric r -matrices. This problem was approached for the case of the general skew symmetric
r -matrices in [23] and solved for the case of the simplest rational r -matrix in [24].

Example 2. In the one-spin case (N = 1), our construction gives one the hamiltonian:

Ĥ1
= 1/2

dim g∑
α,β=1

rαβ

0 (u1, u1)(Ŝ1
α Ŝ1

β + Ŝ1
β Ŝ1

α).
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As will be clear from Example 16, these are generalizations of the quantized hamiltonian of the anisotropic Euler top
on so(3).

Example 3. In the case of two spins Ŝ1, Ŝ2 (N = 2), our construction yields the following two independent mutually
commuting quantum hamiltonians:

Ĥ1
=

dim g∑
α,β=1

rαβ(u2, u1)Ŝ2
α Ŝ1

β + 1/2
dim g∑
α,β=1

rαβ

0 (u1, u1)(Ŝ1
α Ŝ1

β + Ŝ1
β Ŝ1

α),

Ĥ2
=

dim g∑
α,β=1

rαβ(u1, u2)Ŝ1
α Ŝ2

β + 1/2
dim g∑
α,β=1

rαβ

0 (u2, u2)(Ŝ2
α Ŝ2

β + Ŝ2
β Ŝ2

α).

As will be clear from Example 16, these hamiltonians are generalizations of the quantized commuting Steklov top
hamiltonians on so(3) ⊕ so(3).

3. Classical r matrices and quasigraded Lie algebras

In this section we construct new non-skew classical r matrices with the spectral parameters starting from the special
quasigraded Lie algebras, which are constructed in the second and third subsections of this section.

3.1. Classical r-matrices from special infinite-dimensional algebras

In this subsection we will recall briefly the Kostant–Adler scheme and its connection with the solutions of Eq. (6).
Let g̃ hereafter be some infinite-dimensional Lie algebra of g-valued functions of one complex variable u with
values in a semisimple (reductive) Lie algebra g and natural Lie bracket [ , ]. Now let the Lie algebra g̃ possess
the Kostant–Adler scheme, i.e. admit as a linear space decomposition into the direct sum of two subalgebras:

g̃ = g̃+ + g̃−. (14)

It is well known [22] that it is possible to equip the linear space g̃ with new “direct difference” Lie brackets:

[X (u), Y (u)]0 = [X+(u), Y+(u)] − [X−(u), Y−(u)], (15)

where X (u) = X+(u)+ X−(u), Y (u) = Y+(u)+Y−(u) and X±(u), Y±(u) ∈ g̃±. Let P± be two projection operators
on the Lie subalgebras g̃± correspondingly: P±(X (u)) = X±(u). It is also well known [15] that this bracket could be
represented in the form:

[X (u), Y (u)]0 = [R(X (u)), Y (u)] + [X (u), R(Y (u))],

where operator

R = 1/2(P+ − P−) (16)

satisfies the so-called modified Yang–Baxter equation [11].
Let us now assume that this R-operator possesses the kernel:

R(X)(u) =

∮
u=0

(r12(u, v), X2(v))2, (17)

where r12(u, v) is g ⊗ g-valued function of two complex variables, X2(v) ≡ 1 ⊗ X2, and ( , ) is invariant non-
degenerated bilinear form on g. It is possible to show (see [22]) that the function r12(u, v) satisfies the generalized
Yang–Baxter equation (6).

Let X̃m
α ≡ X̃m

α (u), where m ∈ Z , α ∈ 1, dim g is a basis in g̃ compatible with the decomposition (14), i.e. X̃m
α ∈ g̃+

for m ≥ 0 and X̃m
α ∈ g̃− for m < 0. Let Ỹ m

α ≡ Y m
α (u) be a basis in the linear space g̃∗ dual to the basis X̃m

α in g̃∗ with
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respect to the natural pairing 〈X (u), Y (u)〉 = resu=0(X (u), Y (u)). In this case, the kernel r of the operator R can be
represented as follows:

r1,2(u, v) = 1/2

(
dim g∑
α=1

∑
m≥0

X̃m
α (u) ⊗ Ỹ m

α (v) −

dim g∑
α=1

∑
m<0

X̃m
α (u) ⊗ Ỹ m

α (v)

)
. (18)

This formula will be the basis in our search for new solutions of Eq. (6).

3.2. Quasigraded Lie algebras with Kostant–Adler decomposition

As is well known [22], many classical r -matrices are connected with the graded algebras and their decompositions
into a direct sum of two subalgebras. An important observation made in our previous papers [16–19] was that some
quasigraded Lie algebras also admit such decompositions and possess the corresponding r -matrix. In what follows,
we generalize this construction. Let us begin with the following definition [25]:

Definition. An infinite-dimensional Lie algebra g̃ is called Z-quasigraded of type (p, q) if it admits a decomposition:

g̃ =

∑
j∈Z

g j , such that [gi , g j ] ⊂

q∑
k=−p

gi+ j+k .

The following important observation [16–19] holds true:

Proposition 3.1. Let g̃ be Z-quasigraded of type (0, 1), or (1, 0). Then g̃ admits decomposition (14) with g̃± =∑
j∈Z±

g j .

Let g be some finite-dimensional Lie algebra with the Lie bracket [ , ]. One of the possible realizations of the above
quasigraded Lie algebra is a loop space g(u−1, u) = g × Pol(u, u−1) (we will also use notation g(u−1, u)) for its
extension with Laurent power series) with the specially defined bracket. Indeed, let X i

α = Xα ⊗ ui
∈ gi be a basis

in g̃ where Xα is a basic element of semisimple Lie algebra g. Then it is easy to see that, on such basic elements, the
required bracket should be written as follows [19]:

[X i
α, X j

β ]F = [Xα, Xβ ]
i+ j

+ F(Xα, Xβ)i+ j+1, (19)

where [Xα, Xβ ]
i+ j

≡ [Xα, Xβ ] ⊗ ui+ j , F(Xα, Xβ)i+ j+1
≡ F(Xα, Xβ) ⊗ ui+ j+1 and F( , ) a is a skew symmetric

map g × g → g satisfying two requirements [19]:∑
c.p. {α,β,γ }

[F(Xα, Xβ), Xγ ] + F([Xα, Xβ ], Xγ ) = 0, (20a)

∑
c.p. {α,β,γ }

F(F(Xα, Xβ), Xγ ) = 0. (20b)

Condition (20b) is exactly the Jacobi identity for the Lie brackets defined by cochains F : [ , ]1 = F( , ). Hence we
have reduced a construction of “Kostant–Adler-admissible” quasigraded Lie algebras to a task of finding a pair of two
Lie brackets on the vector space g satisfying Eq. (20a). Eq. (20a) is easily seen to be equivalent to the compatibility
condition for the Lie brackets [ , ] and [ , ]1. The problem of constructing the compatible Lie brackets on g was
investigated in [26,27,20]. We will use the following observation [20]:

Proposition 3.2. Let a Lie algebra g be such that H2(g, g) = 0, in particular let g be semisimple. Denote by δ a
standard co-boundary operator on the g-valued polylinnear forms. Then

(i) There is a linear map Φ1 : g → g such that

F(X, Y ) = δΦ1(X, Y ) ≡ [Φ1(X), Y ] + [X,Φ1(Y )] − Φ1([X, Y ])

solves condition (20a).
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(ii) Condition (20b) is equivalent to the following equation on the map Φ1:

Φ1(δΦ1(X, Y )) − [Φ1(X),Φ1(Y )] = δΦ2(X, Y ), (21)

for some linear map Φ2 : g → g.

Example 4. In the case Φ2 = 0, this equation coincide with the condition of triviality of Nijenhuis curvature for the
tensor Φ1:

Φ1(δΦ1(X, Y )) − [Φ1(X),Φ1(Y )] = 0. (22)

The simplest solution of the Eqs. (21) and (22) corresponds to the case Φ2
1 = 0. This reduces Eq. (21) to the classical

Yang–Baxter equation:

Φ1([Φ1(X), Y ] + [X,Φ1(Y )]) − [Φ1(X),Φ1(Y )] = 0, (23)

i.e. any nilpotent solutions of the constant Yang–Baxter equations provides us with solutions of Eqs. (21) and (22).

Example 5. Let us consider the case of one of the classical matrix Lie algebras g = gl(n), so(n), sp(n) and two
cochains Φ1, Φ2 given by the formula:

Φ1(X) =
1
2
(AX + X A), Φ2(X) =

1
4

(
AX A −

1
2
(A2 X + X A2)

)
where A is a matrix such that 1/2(AX + X A) ∈ g and arbitrary otherwise. By direct calculations, one can show that
such cochains satisfy Eq. (21). Direct calculations also show that δΦ1(X, Y ) = X AY − Y AX , and we arrive at the
cocycle FA from [26] which is used extensively in our previous papers [16–19].

Remark 4. Let us explain the relation of the compatible Lie brackets that could be constructed using Proposition 3.2
to the classification of the compatible Lie brackets given in [26]. In [26] so-called “closed” pencils of the compatible
Lie brackets were classified on the finite-dimensional linear spaces. The condition of “closedness” is very restrictive.
It is not true for all pencils of the compatible Lie brackets. Indeed, in the case when the linear space coincides
with the classical matrix Lie algebras with the usual matrix commutator, the corresponding second Lie bracket
that is compatible with it, according to the classification of [26], is only the bracket FA from Example 5. But the
corresponding cochains Φ1 and Φ2 of Example 5 do not exhaust the set of all solutions of Eq. (21). For example, the
cochains Φ1 from Example 4 (in the case rank g ≥ 2) do not fall into the category of the cochains from Example 5
and the corresponding Lie pencil is not “closed” in the sence of [26].

Definition. We denote infinite-dimensional Lie algebras constructed via the cocycle F = δΦ1 by g̃F . The Lie algebras
g̃F are quasigraded of the type (0, 1) by the very construction and, by virtue of Proposition 3.1, admits decomposition
into the direct sum of two subalgebras: g̃F = g̃F+ + g̃F−.

Remark 5. We have constructed a special quasigraded Lie algebra g̃F as a loop Lie algebra g(u−1, u) with the
modified Lie bracket. In the next section we will realize Lie algebra g̃F as a special quasigraded subalgebra of the Lie
algebra g(u−1, u)) of formal Laurent power series, but with a standard Lie bracket in the tensor product. This will be
necessary in order to construct the corresponding classical r -matrix using formula (18).

3.3. Functional realization of g̃F and g̃F
∗

Let us now consider a Lie algebra of Laurent power series g(u−1, u)). Let us also consider the linear spaces g̃Φ−,
g̃Φ+, g̃Φ ∈ g(u−1, u)) spanned by finite linear combination of the following formal basic elements:

X̃n
a = (1 + uΦ1 + u2Φ2 + u3Φ3 + · · ·) · (Xαun) ≡ Φ(u) · (Xαun), (24)

where n < 0, n ≥ 0 and n ∈ Z correspondingly.
As was noticed in the paper [20], the following lemma holds true:
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Lemma 3.1. Let H2(g, g) = 0 and the cochains Φ1, Φ2 satisfy Eq. (21). Then the coefficients Φk , k > 2 could be
chosen in such a way that Φ(u)([X, Y ] + uδΦ1(X, Y )) = [Φ(u)(X),Φ(u)(Y )]. Coefficients of Φ(u) are defined up
to the automorphism g(u) of g(u−1, u)) of the form g(u) = 1 +

∑
∞

k=1 gkuk , gk ∈ Aut(g).

Remark 6. Cochains Φk , k > 2 are (modulo the ambiguity connected with the automorphism g(u)) calculated via
the following recurrence formula:

δΦk(X, Y ) = −Φk−1(δΦ1(X, Y )) +

k−1∑
l=1

[Φl(X),Φk−l(Y )]. (25)

From this, it follows that if Φ2 = 0, then Φk = 0, ∀k > 2.

Using the above lemma it is straightforward to prove the following proposition:

Proposition 3.3. Let H2(g, g) = 0 and the cochains Φ1, Φ2 satisfy Eq. (21). Then the linear spaces g̃Φ , g̃Φ+,
g̃Φ− form closed Lie subalgebras in the Lie algebra g(u−1, u)). Moreover, these algebras are quasigraded and the
following isomorphisms hold: g̃Φ ' g̃F , g̃Φ+ ' g̃F +, g̃Φ− ' g̃F −.

Remark 7. The fact that g̃Φ− forms closed Lie algebra was noticed also in [20]. But the possibility to extend it by the
algebra g̃Φ+ to the full algebra g̃Φ and quasigraded character of all these algebras was not noticed and acknowledged
there.

Remark 8. Note that, for the case when Φk = 0, ∀k > 1, algebra g̃Φ is realized as a quasigraded subalgebra of the
loop algebra g(u, u−1) spanned over the monomials

X̃n
a = (Xαun

+ Φ1(Xα)un+1).

Note that, even in this case, g̃Φ is not isomorphic to the loop algebra g(u, u−1), because the image of the inverse
homomorphism Φ(u)−1 is a formal power series and does not, rigorously speaking, belong to the space of Laurent
polynomials. Nevertheless, the isomorphism g̃Φ ' g(u−1, u) holds for the nilpotent maps Φ1 (Φk = 0, k > 1), in
particular when Φ2

1 = 0.

Example 6. Let us consider the case of the classical matrix Lie algebras g = gl(n), so(n), sp(n) and two cochains
Φ1, Φ2 defined as in Example 5. By a direct calculation, using the formula (25) it is possible to show that the map
Φ(u) in this case is given by the formula:

Φ(u)(X) =
√

1 + Au X
√

1 + Au,

i.e. we obtain an “irrational” realization of the Lie algebra g̃F ' g̃A used in papers [16–19].

Having in mind the explicit functional realization g̃Φ of the algebra g̃F , we can easily write an explicit form of the
dual space and coadjoint representation. Let us define a pairing between X (u) ∈ g̃Φ and Y (u) ∈ g̃Φ

∗ in the standard
way:

〈X (u), Y (u)〉 =

∮
u=0

(X (u), Y (u)),

where ( , ) is a nondegenerate invariant form on g.
The basic elements of the dual space g̃Φ

∗ under such a choice of the pairing have the form:

Ỹ −n
a = (1 + uΦ∗

1 + u2Φ∗

2 + · · ·)−1
· (Xαun−1), (26)

where Xα is a basic element of the dual space: (Xβ , Xα) = δα
β and Φ∗

k is a linear operator on g dual to Φk with respect
to the scalar product ( , ): (Φk(X), Y ) = (X,Φ∗

k (Y )).

Example 7. In the case Φ2 = 0 and Φ2
1 = 0, this formula acquires a more simple form:

Ỹ −n
a = (1 + uΦ∗

1 )−1
· (Xαun−1) = (1 − uΦ∗

1 ) · (Xαun−1). (27)
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Example 8. In the case of the classical matrix Lie algebras g = gl(n), so(n), sp(n) and two cochains Φ1, Φ2 defined
as in Example 5, we have that:

Ỹ −n
a =

√
(1 + Au)−1 Xαun−1

√
(1 + Au)−1. (28)

Remark 9. It is evident from the explicit form of the basic elements of the algebra and dual space that g̃Φ
∗ does not

coincide with g̃Φ as a linear space. It is possible to show that they also do not coincide as g̃Φ-modules. This means
that the corresponding r -matrix is not skew symmetric.

3.4. New non-skew classical r-matrices

Now, using the results of the previous sections, it is easy to calculate new solutions of the classical YB-equation
that correspond to the algebra g̃F .

Theorem 3.1. Let H2(g, g) = 0 and the map Φ(u) : g(u−1, u)) → g(u−1, u)): Φ(u) =
∑

∞

k=0 Φkuk such that
Φ0 = 1, Φ1 and Φ2 satisfy Eq. (21) and coefficients Φk are chosen according to Lemma 3.1, then:

(i) the function rΦ(u, v) of two complex variables:

rΦ(u, v) =

dim g∑
α=1

Φ(u) · Xα ⊗ (Φ(v)−1)∗ · Xα

(u − v)
(29)

satisfies the generalized classical Yang–Baxter equation (6).
(ii) The regular part of the classical r-matrix rΦ(v, v) has the following form:

(rΦ)0(v, v) =

dim g∑
α=1

∂vΦ(v) · Xα ⊗ (Φ(v)−1)∗ · Xα. (30)

Proof. Proof of item (i) follows from the application of formula (18) and the explicit form of the basic elements (24)
and (26). Item (ii) is proved by direct verification. �

Example 9. For the case of the nilpotent solutions of Eq. (21) such that Φ2
1 = 0, Φ2 = 0, we see that the corresponding

r -matrix is “rational”:

rΦ1(u, v) =

dim g∑
α=1

(1 + uΦ1) · Xα ⊗ (1 − vΦ∗

1 ) · X∗
α

(u − v)
. (31)

Taking into account that Φ2
1 = 0 and making simple transformations, we obtain:

rΦ1(u, v) =
ĉ

(u − v)
+

dim g∑
α,β=1

Φαβ

1 Xα ⊗ Xβ , (32)

where Φαβ

1 = gβγ (Φ1)
α
γ and gβγ

= (Xβ , Xγ ). Evidently, the regular part of the r -matrix has the form r0 =∑dim g
α,β=1 Φαβ

1 Xα ⊗ Xβ . It is easy to show that it satisfies the constant Yang–Baxter equation: [(r0)12, (r0)13] =

[(r0)23, (r0)12] − [(r0)32, (r0)13].

Example 10. Let us consider classical matrix Lie algebras g = gl(n), g = so(n), g = sp(n) and cochains Φ1 and Φ2
defined in Example 5. In this case, using Examples 7 and 8 we obtain that formula (29) acquires the following form:

rΦ(u, v) =
1

(u − v)

dim g∑
α=1

√
1 + Au Xα

√
1 + Au ⊗ (

√
1 + Av)−1 X∗

α(
√

1 + Av)−1. (33)
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This is exactly an “irrational” classical r -matrix rΦ(u, v) ≡ rA(u, v) described in our previous paper [9]. Its “regular”
part is given by the following formula:

rΦ(v, v) =

(
dim g∑
α=1

∂v(
√

1 + AvXα

√
1 + Av) ⊗ (

√
1 + Av)−1 X∗

α(
√

1 + Av)−1

)
.

Example 11. Let us consider in detail the r -matrices from the previous example, but for the special cases of the
diagonal matrices A: A = diag(a1, a2, . . . , an). Letting Xα = X i j be the standard “matrix” basis in these algebras,
then formula (29) acquires the following simple form:

rA(u, v) =
1

(u − v)

n∑
i j=1

√
(1 + ai u)(1 + a j u)

(1 + aiv)(1 + a jv)
X i j ⊗ X j i . (34)

Its “regular” part also has a very nice form:

(rA)0(v, v) =
1
2

n∑
i, j=1

(
ai

(1 + aiv)
+

a j

(1 + a jv)

)
X i j ⊗ X j i . (35)

Example 12. Let g = so(3). Then, introducing the new basis X i = εi jk X jk and using the previous example, we
obtain the following explicit form of the irrational so(3) r -matrix:

rA(u, v) =

3∏
i=1

√
(1 + ai u)

(1 + aiv)

3∑
k=1

√
(1 + akv)

(1 + aku)

Xk ⊗ Xk

(u − v)
. (36)

Its “regular” part is written as:

(rA)0(v, v) =
1
2

3∏
i=1

(1 + aiv)−1
3∑

k=1

(
a1a2a3

ak
v − ak

)
(1 + akv)Xk ⊗ Xk . (37)

4. Examples of new integrable quantum spin chains

In this section, using the classical r -matrices constructed in the previous section will explicitly obtain Hamiltonians
of the new integrable quantum spin chains (9).

From Theorems 2.1 and 3.1, the next corollary follows:

Corollary 4.1. Let a Lie algebra g be semisimple (reductive) and the map Φ(u) : g → g satisfy the conditions of
Theorem 3.1. Let map Φ(u) be correctly defined in the neighborhood of the points u = ul , l ∈ 1, N and possess
formal inverse: det Φ(ul) 6= 0. Then the operators Ĥ l :

Ĥ l
=

N∑
k=1,k 6=l

dim g∑
α,β=1

(Φ−1(ul)Φ(uk))
αβ

(uk − ul)
Ŝk
α Ŝl

β +
1
2

dim g∑
α,β=1

(Φ−1(ul)∂ul Φ(ul))
αβ(Ŝl

α Ŝl
β + Ŝl

β Ŝl
α), l = 1, N (38)

constitute a commutative family in the universal enveloping algebra A(g⊕N ) and all its linear representations.

Let us consider concrete examples of this formula for the concrete r -matrices rφ :

Example 13. Let g be an arbitrary semisimple Lie algebra and r -matrix rφ(u, v) be given by Example 11. The
corresponding hamiltonians have the following form:

Ĥ l
=

dim g∑
α,β=1

N∑
k=1,6=l

(
gαβ Ŝk

α Ŝl
β

(uk − ul)
+ Φαβ

1 Ŝk
α Ŝl

β

)
+

1
2

dim g∑
α,β=1

Φαβ

1 (Ŝl
α Ŝl

β + Ŝl
β Ŝl

α), l = 1, N . (39)

Here, the tensor r0 =
∑dim g

α=1 Φαβ

1 Xα ⊗ Xβ is a non-skew nilpotent solution of the constant Yang–Baxter equation.
Note that, in this example, no additional constraint was imposed on the numbers uk , k = 1, N .
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Example 14. Let us consider the case g = gl(n), so(n), sp(n) and r -matrix rφ(u, v) = rA(u, v) from Example 8.
Corresponding hamiltonians have the following explicit form:

Ĥ l
=

N∑
k=1,k 6=l

1
(uk − ul)

n∑
i j=1

√
(1 + ai uk)(1 + a j uk)

(1 + ai ul)(1 + a j ul)
Ŝk

i j Ŝl
j i +

1
2

n∑
i j=1

(
ai

(1 + ai ul)
+

a j

(1 + a j ul)

)
Ŝl

i j Ŝl
j i .

Here, numbers uk are subjected to the constraint (1 + ai uk) 6= 0, ∀k ∈ 1, N , i ∈ 1, n. Commutation relations among
the “generalized” spin operators {Ŝl

j i } are standard commutation relations of gl(n), so(n) or sp(n) (see [17]). For
example, for g = gl(n) we have:

[Ŝm
i j , Ŝn

kl ] = δmn(δk j Ŝn
il − δil Ŝn

k j ).

Example 15. Let us consider the case g = so(3) and r -matrix from Example 12. Corresponding hamiltonians have
the following explicit form:

Ĥ l
=

(
N∑

m=1,m 6=l

3∏
i=1

√
(1 + ai um)

(1 + ai ul)

3∑
k=1

√
(1 + akul)

(1 + akum)

Ŝm
k Ŝl

k

(um − ul)

+
1
2

3∏
i=1

(1 + ai ul)
−1

3∑
k=1

(
a1a2a3

ak
ul − ak

)
(1 + akul)Ŝl

k Ŝl
k

)
. (40)

Here, numbers uk are subjected to the constraint (1 + ai uk) 6= 0, ∀k ∈ 1, N , i ∈ 1, 3. Commutation relations among
the spin operators {Ŝl

k} are standard:

[Ŝm
i , Ŝl

j ] = δml
3∑

k=1

εi jk Ŝl
k . (41)

Example 16. Let us consider the previous example in more detail, but in the simplest cases N = 1 and N = 2. In the
case N = 1, our construction yields the following hamiltonian:

Ĥ1
=

1
2

3∏
i=1

(1 + ai u1)
−1

3∑
k=1

(
a1a2a3

ak
u1 − ak

)
(1 + aku1)Ŝ1

k Ŝ1
k .

For u1 = 0, it coincides with the standard quantum hamiltonian of the anisotropic Euler top:

Ĥ1
= −

1
2

3∑
k=1

ak Ŝ1
k Ŝ1

k .

In the case N = 2, we have two independent commuting quantum hamiltonians:

Ĥ1
=

3∏
i=1

√
(1 + ai u2)

(1 + ai u2)

3∑
k=1

√
(1 + aku1)

(1 + aku2)

Ŝ2
k Ŝ1

k

(u2 − u1)

+
1
2

3∏
i=1

(1 + ai u1)
−1

3∑
k=1

(
a1a2a3

ak
u1 − ak

)
(1 + aku1)Ŝ1

k Ŝ1
k ,

Ĥ2
=

3∏
i=1

√
(1 + ai u1)

(1 + ai u2)

3∑
k=1

√
(1 + aku2)

(1 + aku1)

Ŝ1
k Ŝ2

k

(u1 − u2)

+
1
2

3∏
i=1

(1 + ai u2)
−1

3∑
k=1

(
a1a2a3

ak
u2 − ak

)
(1 + aku2)Ŝ2

k Ŝ2
k .
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Let us consider a special choice of u1, u2: u1 → 0, u2 → ∞. In order for the hamiltonian Ĥ2 to be non-trivial after
this limit, we will consider instead of it the hamiltonian

Ĥ2′

= − lim
u2→∞

(u2
2 Ĥ2

− u2ĉ2) −
1
2

(
3∑

k=1

a−1
k

)
ĉ2,

where ĉ2
=
∑3

k=1 ak Ŝ2
k Ŝ2

k is a Casimir operator. We obtain:

Ĥ1
=

3∑
k=1

√
a1a2a3

ak
Ŝ2

k Ŝ1
k −

1
2

3∑
k=1

ak Ŝ1
k Ŝ1

k ,

Ĥ2′

=

3∑
k=1

√
ak

a1a2a3
Ŝ1

k Ŝ2
k −

1
2

3∑
k=1

a−1
k Ŝ2

k Ŝ2
k .

These hamiltonians are exactly quantized hamiltonians of the Steklov system on so(4) [15].

5. Conclusion and discussion

In the present paper, using general non-skew symmetric classical r -matrices with the spectral parameter, we
have constructed new quantum spin chains that generalize famous Gaudin spin chains. With the help of the special
quasigraded Lie algebras, we have explicitly constructed new non-skew symmetric classical r -matrices with the
spectral parameters. Using them, we have obtained a number of new examples of integrable quantum Gaudin-type
spin chains.

An interesting and important problem is the diagonalization of these hamiltonians, i.e. explicit construction of their
eigen-vectors and eigen-values. Work on this problem is now in progress; the first results are already obtained and we
will return to them in future publications.
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Appendix. Proof of the main theorem

We will prove the theorem directly showing that [Ĥ k, Ĥ l
] = 0 ∀k, l, k 6= l. For this purpose, we represent our

hamiltonians as follows: Ĥ k
= Ĥ k

0 + Ĥ k
1 , Ĥ l

= Ĥ l
0 + Ĥ l

1, where

Ĥ l
0 =

dim g∑
α,β=1

N∑
k 6=l

rαβ(uk, ul)Ŝk
α Ŝl

β , Ĥ l
1 = 1/2

dim g∑
α,β=1

rαβ

0 (ul , ul)(Ŝl
α Ŝl

β + Ŝl
β Ŝl

α).

It is easy to see that [Ĥ k
1 , Ĥ l

1] = 0, and hence:

[Ĥ k, Ĥ l
] = [Ĥ k

0 , Ĥ l
0] + [Ĥ k

0 , Ĥ l
1] + [Ĥ k

1 , Ĥ l
0]. (42)

Let us calculate each of these summands separately:

[Ĥ k
0 , Ĥ l

0] =

∑
m 6=k

∑
n 6=l

∑
α,β,γ,δ

rα,β(um, uk)r
γ,δ(un, ul)[Ŝ

m
α Ŝk

β , Ŝn
γ Ŝl

δ]

=

∑
m,n 6=k,l

∑
α,β,γ,δ

rα,β(um, uk)r
γ,δ(un, ul)[Ŝ

m
α Ŝk

β , Ŝn
γ Ŝl

δ]

+

∑
n 6=l,k

∑
α,β,γ,δ

rα,β(ul , uk)r
γ,δ(un, ul)[Ŝ

l
α Ŝk

β , Ŝn
γ Ŝl

δ]
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+

∑
m 6=k,l

∑
α,β,γ,δ

rα,β(um, uk)r
γ,δ(uk, ul)[Ŝ

m
α Ŝk

β , Ŝk
γ Ŝl

δ]

+

∑
α,β,γ,δ

rα,β(ul , uk)r
γ,δ(uk, ul)[Ŝ

l
α Ŝk

β , Ŝk
γ Ŝl

δ]

=

∑
m 6=k,l

rα,β(um, uk)r
γ,δ(um, ul)C

κ
αγ Ŝm

κ Ŝk
β Ŝl

δ +

∑
m 6=l,k

∑
α,β,γ,δ

rα,β(ul , uk)r
γ,δ(um, ul)C

κ
αδ Ŝl

κ Ŝk
β Ŝm

γ

+

∑
m 6=k,l

∑
α,β,γ,δ

rα,β(um, uk)r
γ,δ(uk, ul)C

κ
βγ Ŝm

α Ŝk
κ Ŝl

δ

+

∑
α,β,γ,δ

rα,β(ul , uk)r
γ,δ(uk, ul)[Ŝ

l
α Ŝk

β , Ŝk
γ Ŝl

δ].

Note that, in the first three summands of the final expression in the right-hand side of this equality, indices
m, k, l are all different and the order of the following operators Ŝm

κ , Ŝk
β , Ŝl

δ is not important. Let us consider

these summands in more details. Taking into account that r12(um, uk) =
∑dim g

α,β=1 rαβ(um, uk)Xα ⊗ Xβ ⊗ 1,

r13(um, ul) =
∑dim g

γ,δ=1 rγ δ(um, ul)Xγ ⊗ 1 ⊗ Xδ , r23(uk, ul) =
∑dim g

γ,δ=1 rγ δ(uk, ul)1 ⊗ Xγ ⊗ Xδ , and r32(ul , uk) =∑dim g
α,β=1 rαβ(uk, ul)1 ⊗ Xβ ⊗ Xα , we obtain that they can be re-written in the following way:

〈[r12(um, uk), r13(um, ul)] + [r12(um, uk), r23(uk, ul)] + [r32(ul , uk), r13(um, ul)], Ŝm
1 Ŝk

2 Ŝl
3〉

where we have used the following notations:

Ŝm
1 =

dim g∑
α=1

Ŝm
α Xα

⊗ 1 ⊗ 1, Ŝk
2 =

dim g∑
β=1

1 ⊗ Ŝm
β Xβ

⊗ 1, Ŝl
3 =

dim g∑
δ=1

1 ⊗ 1 ⊗ Ŝm
δ X δ,

and 〈 , 〉 is a scalar product on g ⊗ g ⊗ g extended in a natural way from the scalar product on g and 〈Xα, Xβ
〉 = δ

β
α .

By virtue of the generalized Yang–Baxter equation, these summands are canceled. Hence, we obtain:

[Ĥ k
0 , Ĥ l

0] =

∑
α,β,γ,δ

rα,β(ul , uk)r
γ,δ(uk, ul)[Ŝ

l
α Ŝk

β , Ŝk
γ Ŝl

δ].

Let us consider this expression in detail:

[Ŝl
α Ŝk

β , Ŝk
γ Ŝl

δ] = Ŝl
α Ŝl

δ[Ŝ
k
β , Ŝk

γ ] + [Ŝl
α, Ŝl

δ]Ŝ
k
γ Ŝk

β , (43)

where we have again used that Ŝl
δ and Ŝk

β mutually commute. Let us show that this expression is symmetric with
respect to the permutation of all operators. It is enough to show that it is symmetric with respect to the permutation of
the operators with the same upper indices. We have:

[Ŝl
α Ŝk

β , Ŝk
γ Ŝl

δ] =
1
2
(Ŝl

α Ŝl
δ + Ŝl

δ Ŝl
α)[Ŝk

β , Ŝk
γ ] +

1
2
[Ŝl

α, Ŝl
δ](Ŝk

γ Ŝk
β + Ŝk

β Ŝk
γ )

+
1
2
([Ŝl

α, Ŝl
δ][Ŝ

k
β , Ŝk

γ ] + [Ŝl
α, Ŝl

δ][Ŝ
k
γ , Ŝk

β ])

=
1
2

Cκ
βγ (Ŝl

α Ŝl
δ + Ŝl

δ Ŝl
α)Ŝk

κ +
1
2

Cκ
αδ Ŝl

κ(Ŝk
γ Ŝk

β + Ŝk
β Ŝk

γ ).

We obtain that formula (43) can be re-written in the symmetrized tensor form:

[Ĥ k
0 , Ĥ l

0] =
1
2
〈[r12(ul , uk), r23(uk, ul)], ((Ŝl

1 Ŝl
3))Ŝk

2 〉 +
1
2
〈[r32(ul , uk), r13(uk, ul)], ((Ŝk

1 Ŝk
2 ))Ŝl

3〉, (44)

where ((Ŝl
1 Ŝl

3)) ≡
∑

αβ(Ŝl
α Ŝl

β + Ŝl
β Ŝl

α)Xα ⊗ 1 ⊗ Xβ and ((Ŝk
1 Ŝk

2 )) ≡
∑

αβ(Ŝk
α Ŝk

β + Ŝk
β Ŝk

α)Xα ⊗ Xβ ⊗ 1.
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Let us now calculate the expression [H k
1 , H l

0] explicitly:

[Ĥ k
1 , Ĥ l

0] =
1
2

∑
m 6=k

∑
α,β,γ,δ

rα,β(um, uk)r
γ,δ

0 (ul , ul)[Ŝ
m
α Ŝk

β , (Ŝl
γ Ŝl

δ + Ŝl
δ Ŝl

γ )]

=
1
2

∑
α,β,γ,δ

rα,β(ul , uk)r
γ,δ

0 (ul , ul)[Ŝ
l
α Ŝk

β , (Ŝl
γ Ŝl

δ + Ŝl
δ Ŝl

γ )]

=
1
2

∑
α,β,γ,δ

rα,β(ul , uk)r
γ,δ

0 (ul , ul)Ŝk
β(Cκ

αδ(Ŝl
κ Ŝl

γ + Ŝl
κ Ŝl

γ ) + Cκ
αγ (Ŝl

κ Ŝl
δ + Ŝl

κ Ŝl
δ))

=
1
2
〈[r32(ul , uk) + r12(ul , uk), (r0)13(ul , ul)], ((Ŝl

1 Ŝl
3))Ŝk

2 〉. (45)

In an analogous way, we obtain:

[Ĥ k
0 , Ĥ l

1] =
1
2
〈[(r0)12(uk, uk), r13(uk, ul) + r23(uk, ul)], ((Ŝk

1 Ŝk
2 ))Ŝl

3〉. (46)

Let us now show that the expression [Ĥ k
0 , Ĥ l

0] cancels the expressions [Ĥ k
1 , Ĥ l

0] + [Ĥ k
0 , Ĥ l

1]. For this purpose,
we will more explicitly calculate the expressions [r12(ul , uk), r23(uk, ul)] and [r32(ul , uk), r13(uk, ul)] using the
generalized classical Yang–Baxter equation:

[r12(ul , uk), r23(uk, ul)] = lim
um→ul

([r13(ul , um), r12(ul , uk) + r32(um, uk)])

= lim
um→ul

([
Ĉ13

(ul − um)
+ (r0)13(um, ul), r12(ul , uk) + r32(ul , uk)

+

∞∑
s=1

1
s!

∂s
ul

(r32(ul , uk))(um − ul)
s

])
.

It is easy to show that [Ĉ13, r12(ul , uk) + r32(ul , uk)] = 0, and we obtain:

[r12(ul , uk), r23(uk, ul)] = [(r0)13(ul , ul), r12(ul , uk) + r32(ul , uk)] − [Ĉ13, ∂ul r32(ul , uk)]. (47)

In an analogous way, it is easy to show, that:

[r32(ul , uk), r13(uk, ul)] = [r13(uk, ul) + r23(uk, ul), (r0)12(uk, uk)] + [Ĉ12, ∂uk r23(uk, ul)]. (48)

Substituting equalities (47) and (48) into expression (44) and then substituting (44) together with the expressions
(45) and (46) into Eq. (42), we obtain:

[Ĥ k, Ĥ l
] = 〈[Ĉ12, ∂uk r23(uk, ul)]((Ŝk

1 Ŝk
2 ))Ŝl

3〉 − 〈[Ĉ13, ∂ul r32(ul , uk)]((Ŝl
1 Ŝl

3))Ŝk
2 〉.

On the other hand:

[Ĉ13, ∂ul r32(ul , uk)] =

∑
α,β,γ,δ

gα,β∂ul r
δ,γ (ul , uk)[Xα ⊗ 1 ⊗ Xβ , 1 ⊗ Xγ ⊗ Xδ]

=

∑
α,β,γ,δ,κ

gα,βCκ
βδ∂ul r

δ,γ (ul , uk)Xα ⊗ Xγ ⊗ Xκ

=

∑
α,γ,δ,κ

Cκα
δ ∂ul r

δ,γ (ul , uk)Xα ⊗ Xγ ⊗ Xκ .

It is easy to see that this expression is skew symmetric in the first and third tensor indices. In an analogous way, it
is shown that [Ĉ12, ∂uk r23(uk, ul)] is skew-symmetric in the first and second tensor indices. Hence, after convolution
with ((Ŝl

1 Ŝl
3)) and ((Ŝk

1 Ŝk
2 )) correspondingly, this expression turns to zero. Hence [Ĥ k, Ĥ l

] = 0.
The theorem is proved.
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